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A B S T R A C T   

Specific antibodies can bind to protein antigens with high affinity and specificity, and this property makes them one of the best protein-based therapeutics. Accurate 
prediction of antibody‒protein antigen binding affinity is crucial for designing effective antibodies. The current predictive methods for protein‒protein binding 
affinity usually fail to predict the binding affinity of an antibody‒protein antigen complex with a comparable level of accuracy. Here, new models specific for 
antibody‒antigen binding affinity prediction are developed according to the different types of interface and surface areas present in antibody‒antigen complex. The 
contacts-based descriptors are also employed to construct or train different models specific for antibody‒protein antigen binding affinity prediction. The results of 
this study show that (i) the area-based descriptors are slightly better than the contacts-based descriptors in terms of the predictive power; (ii) the new models specific 
for antibody‒protein antigen binding affinity prediction are superior to the previously-used general models for predicting the protein‒protein binding affinities; (iii) 
the performances of the best area-based and contacts-based models developed in this work are better than the performances of a recently-developed graph-based 
model (i.e., CSM-AB) specific for antibody‒protein antigen binding affinity prediction. The new models developed in this work would not only help understand the 
mechanisms underlying antibody‒protein antigen interactions, but would also be of some applicable utility in the design and virtual screening of antibody-based 
therapeutics.   

1. Introduction 

Antibodies are the central players of the humoral immune response, 
which can recognize different antigens [1,2]. Rational design of specific 
antibody molecules has become an important part of modern biophar-
maceutical industries [3–6]. Accurate prediction of the antibody‒anti-
gen binding affinity is crucial for the virtual screening of the antibody 
candidates during the rational design of therapeutic antibodies [7–11]. 

In the past several years, computational methods have been devel-
oped to predict different antibody properties [3,12], such as antibody 
solubility and aggregation [13–15], immunogenicity or degree of hu-
manness [16], and structure [17–19]. When the antigens are protein or 
peptide molecules, the antibody‒antigen interaction is a type of pro-
tein‒protein interactions, and the predictive models for protein‒protein 
binding affinity theoretically can also be used to predict the antibody‒ 
protein antigen binding affinity. However, most of the 
presently-available models for protein‒protein binding affinity predic-
tion generally fail to obtain the same predictive power for antibody‒ 
protein antigen binding affinity [20]. Therefore, it is necessary to 
develop effective models that can be used for prediction of the 

antibody‒protein antigen binding affinities. 
Currently, several methods are available for antibody‒antigen 

binding affinity prediction, and these methods can be generally classi-
fied into two main categories, i.e., the sequence-based methods [21–24] 
and the structure-based methods [25,26]. Recently, a new 
structure-based antibody‒antigen binding affinity predictive model 
(CSM-AB) was developed by modelling the binding interfaces using 
graph-based descriptors [27]. The contacts-based and area-based de-
scriptors have been proven effective in protein‒protein binding affinity 
prediction in a few earlier studies [28–30]. It is possible that these two 
classes of effective descriptors can be further expanded to enhance the 
accuracy for predicting the antibody-protein antigen binding affinities. 

In this work, the effectiveness of the area-based and contacts-based 
descriptors on antibody-protein antigen binding affinity prediction is 
investigated by constructing and training different predictive models. By 
evaluating the performances of these models on antibody‒protein an-
tigen binding affinity prediction, we found that the best area-based and 
contacts-based models developed in this study are superior to the pre-
vious area-based and contacts-based models constructed for general 
protein‒protein binding affinity prediction [29–31] and the 
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graph-based CSM-AB model specifically designed for antibody‒antigen 
binding affinity prediction [27]. 

2. Materials and methods 

2.1. Datasets and descriptors 

The antibody‒antigen binding affinity data used in this work were 
obtained from SAbDab (http://opig.stats.ox.ac.uk/webapps/newsabda 
b/sabdab/) [32] and an expanded benchmark for antibody‒antigen 
docking and affinity prediction [20]. In the SAbDab, there were 746 
antibody‒antigen complexes (accessed on January 17, 2022) [32]. In 
the expanded benchmark for antibody‒antigen docking and affinity 
prediction (https://github.com/piercelab/antibody_benchmark) (acce 
ssed on November 17, 2020), there were 51 antibody‒antigen com-
plexes [20]. 

Similar to our previous work on the protein‒protein binding affinity 
prediction [29], several criteria were adopted in this study to select the 
data with high quality from the original sources: (1) The resolution of 
the structure of the antibody‒antigen complex is ≤ 3.25 Å. (2) Both the 
heavy and light chains are present in the antibody structure. (3) The 
antigen type is a protein or a peptide. (4) The number of residues con-
tained in the antibody structure is ≥ 400. (5) The number of residues 
contained in the antigen structure is greater than 25 but smaller than (or 
equal to) the number of residues in the antibody structure. (6) One 
antibody only binds to one antigen, and the opposite is also true. 

After filtering, 290 antibody‒antigen complexes from SAbDab [32] 
were placed into the training and validation sets (pre-Set1), and 33 
complexes from the expanded benchmark [20] formed the test set (Set2). 
Since there were 28 shared antibody‒antigen complexes in both pre--
Set1 and Set2, they were removed from pre-Set1 to avoid the cross 
interference between different sets, which forms the Set1 (containing 
262 complexes). 

The area-based descriptors were calculated using the same methods 
reported in the previous work [29]. The residue‒residue contact areas 
across protein‒protein binding interface were calculated using Qcontact 
[33], and the solvent accessible surface area of atoms were computed 
using dr_sasa [34]. The 20 amino acid types were divided into four 
groups: basic AAs (basic amino acids: H, R and K), nonpolar AAs 
(nonpolar (hydrophobic) amino acids: I, F, L, W, A, M, P and V), polar 
AAs (polar but uncharged amino acids: C, N, G, S, Q, Y and T), and acidic 
AAs (acidic amino acids: D and E). 

The surface areas were classified into 8 types, which included 4 types 
of RSA (Receptor Surface Area) and 4 types of LSA (Ligand Surface 
Area): RSA of basic AAs (A1), RSA of nonpolar AAs (A2), RSA of polar 
AAs (A3), and RSA of acidic AAs (A4); LSA of basic AAs (A5), LSA of 
nonpolar AAs (A6), LSA of polar AAs (A7), and LSA of acidic AAs (A8). In 
this study, an antibody was defined as a receptor, and a protein antigen 
as a ligand. The interface areas were categorized into 10 types: basic 
AAs ~ basic AAs (A9), nonpolar AAs ~ nonpolar AAs (A10), polar AAs ~ 
polar AAs (A11), acidic AAs ~ acidic AAs (A12), basic AAs ~ nonpolar 
AAs (A13), basic AAs ~ polar AAs (A14), basic AAs ~ acidic AAs (A15), 
nonpolar AAs ~ polar AAs (A16), nonpolar AAs ~ acidic AAs (A17), and 
polar AAs ~ acidic AAs (A18). 

The contacts-based descriptors at the amino acid level were calcu-
lated using PRODIGY [30,31]. The residues were categorized into three 
groups: polar residues (C, H, N, Q, S, T, W), nonpolar residues (A, F, G, I, 
L, V, M, P, Y), and charged residues (E, D, K, R) [30]. There were eight 
contacts-based descriptors: number of interface contacts of charged 
residues ~ charged residues, number of interface contacts of charged 
residues ~ polar residues, number of interface contacts of charged res-
idues ~ nonpolar residues, number of interface contacts of polar resi-
dues ~ polar residues, number of interface contacts of nonpolar residues 
~ polar residues, number of interface contacts of nonpolar residues ~ 
nonpolar residues, percentage of nonpolar NIS (Non-Interacting Sur-
face) residues, and percentage of charged NIS residues. 

The PDB codes, numbers of residues in the antibody and antigen, 
experimental binding affinities (log(K), where K is the equilibrium 
dissociation constant or the equilibrium inhibition constant), values of 
the 18 area-based descriptors and 8 contacts-based descriptors are 
summarized in Supplementary File 1. 

2.2. Constructing or training the predictive models 

In our recent work, the effective models for protein‒protein binding 
affinity prediction were constructed or trained manually, by linear 
regression and neural network [29]. The same methods were used in this 
study to construct or train models specific for predicting antibody‒an-
tigen binding affinities. Four groups of models were trained or con-
structed to find the models with the best predictive ability for the 
antibody‒antigen binding affinity prediction: the linear models trained 
using linear regression; the nonlinear models manually constructed; the 
nonlinear models trained using neural network or random forest; and 
lastly, the mixed models trained using linear regression of the neural 
network or random forest models. The adopted descriptors and forma-
tions of the models are shown in Table 1. 

2.2.1. Adopted descriptors 
The adopted descriptors in the linear model included different 

combinations based on the 18 area-based or 8 contacts-based de-
scriptors; the descriptors in the constructed nonlinear model included 
different combinations based on no more than 5 variables from the 21 
area-based descriptors (18 original descriptors, one receptor surface 
area (RSA) (A19), one ligand surface area (LSA) (A20), and one total 
interface area (A21)) or different combinations base on the 10 contacts- 
based descriptors (8 original descriptors, one total number of intermo-
lecular contacts, and one total percentage of nonpolar and charged NIS 
residues); the descriptors adopted in the neural network and random 
forest models included all 18 area-based or 8 contacts-based descriptors; 
the descriptors in the mixed model included different combinations 
based on 14 representative area-based neural network (or random for-
est) models or 14 representative contacts-based neural network (or 
random forest) models. 

2.2.2. Formations of the four groups of models 
The formations of the four groups of models are listed in Table 1. The 

Table 1 
The adopted descriptors and formations of the four groups of models for affinity 
prediction.  

Model Type Adopted descriptors Formation Equation 
No. 

Linear model Different combinations of 
the 18 area-based or 8 
contacts-based descriptors 

log(K) = a1x1 +

a2x2 + … +
anxn + b 

(1) 

Constructed 
nonlinear 
model 

different combinations 
based on no more than 5 
variables from the 21 area- 
based descriptors or 
different combinations of 
the 10 area-based 
descriptors 

log(K) ∝ –x1
k1 

x2
k2 … xn

kn 
(2) 

log(K) = ax + b (3) 

Neural network 
or random 
forest model 

18 area-based or 8 contacts- 
based descriptors 

No explicit 
formation 

‒‒ 

Mixed model Different combinations of 
the 14 representative 
nonlinear (neural network 
or random forest) models 

log(K) = a1m1 

+ a2m2 + … +
anmn + b 

(4) 

Note: K is the experimentally-determined equilibrium dissociation constant or 
inhibition constant; x1, x2, …, xn are the descriptors; m1, m2, …, mn are the 
neural network or random forest models; k1, k2, …, kn are the power exponents 
taken from four values: − 1, − 0.5, 0.5, 1; x is the constructed nonlinear term; a1, 
a2, …, an, a are the coefficients, and b is the constant term. 
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linear and constructed nonlinear models had the explicit linear and 
nonlinear formations, respectively; the neural network and random 
forest models did not have explicit formations; the mixed models were 
the linear combination of the representative neural network or random 
forest models. 

2.2.3. Set usage 
When training linear model, neural network model, random forest 

and mixed models, Set1 was divided into the training and validation sets 
evenly and stochastically, and Set2 was used as the test set. The set di-
vision was repeated 100 times for linear formations and 30 times for 

Fig. 1. Flowchart of the antibody‒‒antigen binding affinity prediction. The essential steps include: 1) filtering of the original data; 2) calculation of the de-
scriptors (area-based and contacts-based); and 3) training or constructing models specific for antibody‒antigen binding affinity prediction. For comparison, some of 
the previously-reported models are also used to predict the antibody‒antigen binding affinity. 

Fig. 2. Boxplots of the 18 area-based descriptors and 8 contacts-based descriptors in the structures of antibody‒‒antigen complexes. A. Eight types of 
surface area. B. Percentages of nonpolar and charged surface residues. C. Ten types of interface area. D. Number of the 6 types of interface residue-residue contacts. 

Y.X. Yang et al.                                                                                                                                                                                                                                 



Journal of Molecular Graphics and Modelling 118 (2023) 108364

4

neural network and random forest models, respectively. 
For the constructed nonlinear model, no specific training set existed. 

When generating a and b in equation (3) (shown in Table 1), the training 
set was Set2 with 33 reliable binding affinities from the expanded 
benchmark [20]. 

2.2.4. Methods for generating explicit linear, nonlinear formations or 
training neural network, random forest models 

The linear formations (equations (1), (3) and (4) are shown in 
Table 1) are generated using the least square method [35]. The explicit 
formation in the nonlinear model was constructed based on the 
assumption, i.e., log(K) ∝ –x1

k1 x2
k2 … xn

kn. The possible power exponents 
of the variable were taken from − 1, − 0.5, 0.5, 1. 

The neural network models were trained using back propagation 
neural network [36,37]. In the architecture in the neural network, one 
or two hidden layers was (were) used with number of nodes from 1 to 
20. Because of the stochasticity of initial weight assignment of neural 
network model, 100 models were trained when the number of hidden 
layers and nodes were fixed. 

In the random forest algorithm, the different random subsets of 
regression trees were combined to make each decision [38,39]. Here, an 
enhanced random forest algorithm, i.e., bootstrap-aggregated (bagged) 
decision trees, was employed to alleviate the overfitting effects. In the 
architecture in the random forest, the number of trees is chosen from 50, 
100, …, 500, and the minimum number of observations per tree leaf is 
chosen from 5, 10, 15, 20. Because of the stochasticity of adopted de-
cision trees in the random forest model, 100 models were trained when 
the number of trees and leaves was fixed. 

2.3. Metrics for evaluating the performances of different models 

The predictive powers of different models were evaluated using two 
metrics: Pearson’s correlation coefficient (R) and root mean square error 
(RMSE) between the experimental and predicted binding affinity values. 
They were calculated using the following equations: 

R=

∑n
i=1(xi − x)(yi − y)

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∑n

i=1
(xi − x)2∑n

i=1(yi − y)2
√ (5)  

RMSE=

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∑n

i=1
(xi − yi)

2

n

√
√
√
√
√

(6)  

Here, n is the number of complexes with known binding affinities in the 
set; xi and yi are the experimental and predicted values of the ith pro-
tein‒protein binding affinity, respectively; x and y are the averages of 
the experimental and predicted binding affinities in the set, respectively. 

3. Results 

Fig. 1 is the flowchart of the antibody‒antigen binding affinity 
prediction, which involves three steps: 1) filtering of data from SAbDab 
[32] and the expanded benchmark [20]; 2) calculation of the area-based 
and contacts-based descriptors; 3) training or construction of new 
models specific for antibody‒antigen binding affinity prediction. Based 
on the data sets (after filtering) used in this study, some of the 
previously-established area-based models [29] and contacts-based 
models [30,31] for general protein‒protein binding affinity prediction 
were also studied for comparison of their performances in antibody‒ 
antigen binding affinity prediction. For convenience of description, the 
sets composed of the antibody‒antigen binding affinity data from 
SAbDab [32] and the expanded benchmark [20] are named Set1 (con-
taining 262 complexes) and Set2 (containing 33 complexes), 
respectively. 

3.1. Eighteen area-based descriptors and 8 contacts-based descriptors in 
the structures of antibody‒antigen complexes 

To compare different descriptors, the boxplots (Fig. 2) are plotted 
based on the 18 area-based descriptors and 8 contacts-based descriptors 
in the structures of all 295 antibody‒antigen complexes from the two 
sets after filtering (Supplementary File 1). According to the positions of 
the descriptors in the structure of an antibody‒antigen complex, the 
descriptors were further categorized into surface descriptors and inter-
face descriptors. 

Surface descriptors. Surface contributions to binding affinity were 
estimated using different types of surface area between the receptor and 
ligand in a complex along with the surrounding water molecules [29]. 
As shown in Fig. 2A, the magnitudes of the medians of different types of 
surface area were 1000 Å2. The size relationship of the medians of 
different types of surface area was polar AAs > nonpolar AAs > basic 
AAs > acidic AAs for the receptor or ligand. The medians of the 4 types 
of surface area in the receptor were larger than the corresponding me-
dians in the ligand. The ranges of the 4 types of surface area in the re-
ceptor were smaller than the ones in the ligand, which reflected the 
structural diversity of the protein antigen ligands. Contacts-based sur-
face descriptors employed by PRODIGY were the percentages of surface 
residues rather than the surface contacts with water directly, and the 
receptor and ligand were not considered separately [30,31]. As shown in 
Fig. 2B, most of the nonpolar surface residues ranged from 31% to 42%, 
and most of the charged surface residues ranged from 18% to 27%. The 
percentage of nonpolar surface residues was higher than the percentage 
of charged surface residues, which was related to the numbers of 
nonpolar and charged amino acid residues. 

Interface descriptors. Interface contribution to binding affinity was 
evaluated using the interface area between the receptor and ligand [29]. 
As shown in Fig. 2C, the medians of different types of interface area were 
0–100 Å2. The size relationship of the medians of different types of 
interface area was nonpolar AAs ~ polar AAs > polar AAs ~ polar AAs 
≈ basic AAs ~ polar AAs > polar AAs ~ acidic AAs > nonpolar AAs ~ 
nonpolar AAs > basic AAs ~ nonpolar AAs > basic AAs ~ acidic AAs >
other types of interface area. There were more types of interface area 
associated with polar AAs than with other AAs, which reflected the 
importance of the areas of polar AAs on the interface. 

PRODIGY, a contacts-based model, estimates the interface contri-
bution to binding affinity using interface contacts between the receptor 
and ligand [30,31]. As shown in Fig. 2D, the numbers of the 6 types of 
interface residue-residue contacts ranged from 0 to 45. The median of 
interface contact numbers was nonpolar residues ~ nonpolar residues >
nonpolar residues ~ nonpolar residues = charged residues ~ nonpolar 
residues > charged residues ~ polar residues > charged residues ~ 
charged residues > polar residues ~ polar residues, which may imply 
that the order of importance of the 3 types of residues on the interface is 
nonpolar residues > charged residues > polar residues. 

It should be noted that the area-based descriptors were based on the 
4-group division of the 20 amino acid residues, while the contacts-based 
descriptors were based on the 3-group division of the 20 amino acid 
residues. The conclusions derived from area-based and contacts-based 
descriptors are not always in agreement with each other. The predic-
tive powers of the models using area-based and contacts-based de-
scriptors on binding affinity were compared below to assess the relative 
effectiveness of these two classes of descriptors. 

3.2. Performances of the single descriptors for antibody‒antigen binding 
affinity prediction 

The effectiveness of the single area-based or contacts-based de-
scriptors on antibody‒antigen binding affinity prediction was estimated 
using the Pearson’s correlation coefficient (R) in Set1 and Set2. The area- 
based descriptors contained the following 6 classes: 4 types of receptor 
surface area, 4 types of ligand surface area, 10 types of interface area, 
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total receptor surface area in the complex, total ligand surface area in 
the complex, and total interface area in the complex. The contacts-based 
descriptors contained the following 4 classes: 6 types of the interface 
contact number, 2 types of the surface residue percentage, total interface 
contact number, and total percentage of the 2 types (nonpolar and 
charged) of surface residues. The R values of different descriptors are 
listed in Supplementary File 1, and the performances of different single 
descriptors in Set1 and Set2 are shown in Fig. 3. 

Among the 21 area-based descriptors, there were 6 descriptors with 
absolute R values greater than 0.1 and 0.2 in Set1 and Set2, respectively. 
Based on the absolute R values for the combined set (295 complexes) 
composed of Set1 (262 complexes) and Set2 (33 complexes), the order of 
these area-based descriptors is: interface area of basic AAs ~ nonpolar 
AAs (− 0.29) > polar AAs of LSA (0.27) > total ligand surface area (0.21) 
> interface area of basic AAs ~ acidic AAs (− 0.15) = total interface area 
(− 0.15) > total receptor surface area (0.14). The corresponding R values 
for Set1 (262 complexes) and Set2 (33 complexes) are − 0.28 and − 0.34 
for interface area of basic AAs ~ nonpolar AAs; 0.28 and 0.24 for polar 
AAs of LSA; 0.22 and 0.20 for total ligand surface area; − 0.14 and − 0.26 
for interface area of basic AAs ~ acidic AAs; − 0.14 and − 0.23 for total 
interface area; 0.12 and 0.39 for total receptor surface area. Although 

the performance of total receptor surface area in Set1 (0.12) was not as 
good as those of the other 5 descriptors, its performance in Set2 (0.39) 
was the best among all the descriptors. Different performances in these 
two sets reflected the influence of quantity (large or small) and quality 
(high or low) of the data sets. 

Based on the absolute R values, the component (basic AAs ~ 
nonpolar AAs (− 0.29)) of the interface area was superior to the total 
interface area (− 0.15), and the component (polar AAs of LSA (0.27)) of 
the ligand surface area was superior to the total ligand surface area in 
the complex (0.21). This implies that certain interface (or surface) areas 
are more important than other interface (or surface) regions for the 
association and disassociation of the antibody‒protein antigen com-
plexes, and thus exhibit higher correlations with the experimental 
binding affinities. The less important interface (or surface) regions can 
either increase or decrease the affinities in different environments, and 
accordingly they have lower absolute R values. 

Among the 10 contacts-based descriptors, only 3 descriptors had 
absolute R values higher than 0.1 and 0.2 in Set1 and Set2, respectively. 
Based on the absolute R values of the combined set (295 complexes) 
composed of Set1 and Set2, the order of the 3 contacts-based descriptors 
was: the number of interface contacts of charged residues ~ nonpolar 

Fig. 3. Performance of the single descriptors for antibody‒‒antigen binding affinity prediction. The area-based and contacts-based single descriptors are 
represented as dots and squares, respectively. The performance is estimated using the Pearson’s correlation coefficient (R). 

Fig. 4. Performances of the previous 60 representative area-based models [29] and PRODIGY [30] on antibody‒‒antigen binding affinity prediction. The 60 
area-based models and PRODIGY (contacts-based model) [30] are represented as dots and square, respectively. The performance is estimated using the Pearson’s 
correlation coefficient (R). 
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residues (− 0.19) > the percentage of the nonpolar and charged surface 
residues (− 0.16) > the number of the interface contacts of charged 
residues ~ charged residues (− 0.15). The corresponding R values for 
Set1 (262 complexes) and Set2 (33 complexes) were − 0.17 and − 0.36 
for the number of interface contacts of charged residues ~ nonpolar 
residues; − 0.15 and − 0.24 for the percentage of nonpolar and charged 
surface residues; − 0.12 and − 0.32 for the number of the interface 
contacts of charged residues ~ charged residues. The interface contacts 
of charged residues ~ nonpolar residues and charged residues ~ 
charged residues contributed more significantly to the binding affinity 
than other types of interface contacts, while the interface contacts of 
charged residues ~ charged residues were not in the same ranks of those 
contacts with the largest numbers. This demonstrates the relative 
importance of different amino acid types in binding affinity prediction. 

In the case of single descriptors, the performance of the best area- 
based single descriptor in Set1 and Set2 (interface area of basic AAs ~ 
nonpolar AAs (0.29)) was slightly better than or comparable to the 
performance of the best contacts-based single descriptor (number of 
charged ~ nonpolar interface contacts (− 0.19)). The predictive powers 
of the combinations of these two classes of descriptors on antibody‒ 
antigen binding affinity prediction are discussed below. 

3.3. Performances of the existing area-based models and PRODIGY for 
protein‒protein and antibody‒protein antigen binding affinity prediction 

In our previous work, 60 representative area-based models were 
developed for protein‒protein binding affinity prediction [29]. Addi-
tionally, PRODIGY, a contacts-based simple model, is very effective for 
protein‒protein binding affinity prediction [30,31]. The predictive 

powers of these two models on antibody‒antigen binding affinity pre-
diction were compared based on their performances in Set1 and Set2. 
The predicted binding affinities and the R values of the 61 models 
(including PRODIGY) in the two sets are listed in Supplementary File 2. 

Among the previous 60 area-based models, there are 12 linear 
models, 6 constructed nonlinear models, 5 mixed models based on 
constructed nonlinear models, 11 generated nonlinear models, 5 mixed 
models based on generated nonlinear models, 18 nonlinear (neural 
network) models, and 3 mixed models based on neural network models 
[29]. The performances of these models and PRODIGY are shown in 
Fig. 4. There were 6 models with R values higher than 0.2 and 0.3 in Set1 
and Set2, respectively. These models were linear model 3 (0.21, 0.42), 
constructed nonlinear model 1 (0.23, 0.38), nonlinear model (neural 
network) 9 (0.25, 0.38), nonlinear model (neural network) 17 (0.26, 
0.39), nonlinear model (neural network) 18 (0.22, 0.46) and mixed 
model (based on neural network models) 1 (0.21, 0.73). The formations 
of linear model 3 and constructed nonlinear model 1 were log(K) =
− 0.000344614*A3 + 0.000498127*A4 + 0.000496231*A7 – 
0.013381318*A10 – 0.006715831*A11 – 0.004391993*A14 – 
0.007269689*A15 – 5.276589910 and log(K) = – 
0.304285849*A21/sqrt(A20) – 4.313861057, respectively. There were 
no explicit formations for the other 4 models. The R values of all the 6 
models were smaller than 0.3 in Set1 and 0.5 in Set2 except the mixed 
model 1 (based on neural network models) (0.21, 0.73). The R values of 
PRODIGY in Set1 and Set2 were 0.00 and 0.13, respectively. It is 
apparent that the earlier models for protein‒protein binding affinity 
prediction are unable to provide comparable predictive powers for 
antibody‒protein antigen binding affinities, and new effective 
area-based and contacts-based models should be constructed and 

Fig. 5. Performances of all the area-based and contacts-based linear and constructed nonlinear models specific for antibody‒‒antigen binding affinity 
prediction. A. Area-based linear models. B. Contacts-based linear models. C. Area-based contructed nonlinear models. D. Contacts-based contructed nonlinear 
models. The performance is estimated using the Pearson’s correlation coefficient (R). One dot represents one model. A model is regarded as good when the absolute 
values of R in Set1 (262 complexes) and Set2 (33 complexes) are both higher than a given cutoff value. The good models are colored red, and the other models are 
colored blue. (For interpretation of the references to color in this figure legend, the reader is referred to the Web version of this article.) 
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trained for this purpose. 

3.4. Performances of new area-based and contacts-based models specific 
for antibody‒antigen binding affinity prediction 

Numerous models specific for antibody‒antigen binding affinity 
prediction were constructed or trained in this study employing the area- 
based and contacts-based descriptors. The R values of all the models in 
Set1 and Set2 are shown in Fig. 5, 6 and 7, and the overall results of the 
new models are shown in Table 2. In this study, a model is regarded as 
good if the absolute R values of the model are higher than a given cutoff 
in Set1 and Set2, simultaneously. The cutoffs are 0.40 for linear models, 

0.30 for constructed nonlinear models, 0.40 for neural network models, 
0.70 for mixed models (based on neural network models), 0.50 for 
random forest models, and 0.70 for mixed models (based on random 
forest models). The criteria for setting the cutoffs are: 1) they are suf-
ficiently high for eliminating a large number of models with bad per-
formances; 2) they are also small enough for retaining a reasonably 
small number of models with good performances; 3) they are integral 
multiples of 0.10 for ease of calculation. The percentages (%) of good 
models were 0.34 and 0 for area-based and contacts-based linear models 
(Fig. 5A and B); 0.01 and 0 for area-based and contacts-based con-
structed nonlinear models (Fig. 5C and D); 0.46 and 0.03 for area-based 
and contacts-based neural network models (Fig. 6A and B); and 34.71 

Table 2 
Numbers and percentages of different area-based and contacts-based models with relatively good performances.  

Model type Cutoff of good 
modelsa 

Area-based models Contacts-based models 

Total 
number 

Number of good 
models 

Percentage of good 
models (%) 

Total 
number 

Number of good 
models 

Percentage of good 
models (%) 

Linear model 0.40 26214300 90425 0.34 25500 0 0 
Constructed nonlinear model 0.30 22458100 2861 0.01 9765624 0 0 
Neural network (nonlinear) 

model 
0.40 1260000 5741 0.46 1260000 346 0.03 

Mixed model (based on neural 
network models) 

0.70 1638300 568602 34.71 1638300 8427 0.51 

Random forest (nonlinear) 
model 

0.50 120000 12537 10.30 120000 503 0.42 

Mixed model (based on random 
forest models) 

0.70 1638300 7142 0.44 1638300 0 0  

a Good models: the good models are those with the absolute values of Pearson’s correlation coefficients R higher than a given cutoff in both Set1 and set2. 

Fig. 6. Performances of all the area-based and contacts-based neural network and mixed models specific for antibody‒‒antigen binding affinity predic-
tion. A. Area-based neural network models. B. Contacts-based neural network models. C. Area-based mixed models (using neural network models). D. Contacts- 
based mixed models (using neural network models). The performance is estimated using the Pearson’s correlation coefficient (R). One dot represents one model. 
A model is regarded as good when the absolute values of R in set1 (262 complexes) and set2 (33 complexes) are both higher than a given cutoff value. The good 
models are colored red, and the other models are colored blue. (For interpretation of the references to color in this figure legend, the reader is referred to the Web 
version of this article.) 
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and 0.51 for area-based and contacts-based mixed models (using neural 
network models) (Fig. 6C and D), 10.30 and 0.42 for area-based and 
contacts-based random forest models (Fig. 7A and B), and 0.44 and 0 for 
area-based and contacts-based mixed models (using random forest 
models) (Fig. 7C and D) (Table 2). The percentages of good models with 
the same cutoff were employed to compare the overall performances of 
the contacts-based over area-based models. Overall, the effectiveness of 
contacts-based descriptors adopted by PRODIGY [30,31] was not as 
good as that of area-based descriptors. It should be noted that this is just 

a relative comparison based on the percentages of the good models with 
the same types of models and the same cutoffs. 

Among the new models specific for antibody‒antigen binding af-
finity prediction, 37 area-based models and 29 contacts-based models 
were selected to represent the good models. The 37 area-based models 
were composed of 2 linear models, 3 constructed nonlinear models, 14 
neural network (nonlinear) models, 3 mixed models (based on neural 
network models), 14 random forest models, and 1 mixed model (based 
on random forest models). The 29 contacts-based models incorporated 
14 neural network (nonlinear) models, 1 mixed model (based on neural 

Fig. 7. Performances of all the area-based and contacts-based random forest and mixed models specific for antibody‒‒antigen binding affinity prediction. 
A. Area-based random forest models. B. Contacts-based random forest models. C. Area-based mixed models (using random forest models). D. Contacts-based mixed 
models (using random forest models). The performance is estimated using the Pearson’s correlation coefficient (R). One dot represents one model. A model is 
regarded as good when the absolute values of R in set1 (262 complexes) and set2 (33 complexes) are both higher than a given cutoff value. The good models are 
colored red, and the other models are colored blue. (For interpretation of the references to color in this figure legend, the reader is referred to the Web version of 
this article.) 

Table 3 
Formations of the 2 representative area-based liner models and 3 representaive 
constructed nonlinear models.  

Model Formation 

Linear model 1 log(K) = 0.000162011*A1 + 0.000256584*A3 – 
0.000144866*A5 + 0.000245891*A7 – 0.009747517*A9 – 
0.001788572*A10 + 0.006572632*A12 – 0.006780979*A13 

– 0.000407818*A14 – 0.003204142*A15 +

0.002389057*A17 – 0.001399766*A18 – 10.786964184 
Linear model 2 log(K) = 0.000310207*A3 – 0.000269738*A5 +

0.000342587*A7 – 0.003031625*A9 – 0.002816392*A10 – 
0.000401154*A11 – 0.005831421*A13 – 0.006310465*A15 

+ 0.002184578*A17 – 0.002782307*A18 – 10.593420773 
Constructed nonlinear 

model 1 
log(K) = 0.000000002*A3*A7*A19/A21 – 9.638763114 

Constructed nonlinear 
model 2 

log(K) = 0.000013728*A3*A7*sqrt(A20/A5)/A21 – 
9.557850214 

Constructed nonlinear 
model 3 

log(K) = 0.000335444*A3*A7*sqrt(A16/A20)/A21 – 
10.123693002  

Table 4 
Performances of the 2 representative area-based liner models and 3 repre-
sentaive constructed area-based nonlinear models.  

Model Pearson’s correlation coefficient (R) 

Training set 
(131 
complexes) 

Validation set 
(131 
complexes) 

Set1 (262 
complexes) 

Set2 (33 
complexes) 

Linear model 1 0.43 0.40 0.41 0.50 
Linear model 2 0.40 0.44 0.42 0.46 
Constructed 

nonlinear 
model 1 

—— —— 0.33 0.39 

Constructed 
nonlinear 
model 2 

—— —— 0.35 0.36 

Constructed 
nonlinear 
model 3 

—— —— 0.31 0.48  
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network models), and 14 random forest models. Because all the R values 
for contacts-based mixed models (based on random forest models) were 
smaller than 0.70 in Set1 (Fig. 7D), no representative models were 
selected from these models. The predicted binding affinities of these 
representative models are summarized in Supplementary File 3. The 
formations of the 2 area-based linear models and 3 area-based con-
structed nonlinear models are shown in Table 3, and the performances of 
the representative models are shown in Table 4, 5, 6, 7 and 8. 

As shown Tables 3 and 4, there are 12 descriptors in area-based 
linear model 1 with R value equal to 0.41 in Set1 and 0.50 in Set2, 
and 11 descriptors in area-based linear model 2 with R value equal to 
0.42 in Set1 and 0.46 in Set2. The products of the values of the de-
scriptors and the corresponding coefficients reflect the varying degrees 
of contribution of different areas to the antibody‒antigen binding af-
finity. The constructed nonlinear terms in the 3 representative models 
were A3*A7*A19/A21, A3*A7*sqrt(A20/A5)/A21, and A3*A7*sqrt(A16/ 
A20)/A21, respectively. The corresponding R values in Set1 and Set2 were 
0.33 and 0.39 for constructed nonlinear model 1; 0.35 and 0.36 for 

Table 5 
Performances of the 14 representative area-based neural network (nonliner) 
models and 3 representaive area-based mixed models.  

Model Pearson’s correlation coefficient (R) 

Training set 
(131 
complexes) 

Validation set 
(131 
complexes) 

Set1 (262 
complexes) 

Set2 (33 
complexes) 

Neural 
network 
(nonliner) 
model 1 

0.72 0.24 0.48 0.58 

Neural 
network 
(nonliner) 
model 2 

0.78 0.34 0.57 0.52 

Neural 
network 
(nonliner) 
model 3 

0.73 0.22 0.45 0.65 

Neural 
network 
(nonliner) 
model 4 

0.72 0.34 0.53 0.56 

Neural 
network 
(nonliner) 
model 5 

0.66 0.28 0.45 0.67 

Neural 
network 
(nonliner) 
model 6 

0.76 0.29 0.50 0.58 

Neural 
network 
(nonliner) 
model 7 

0.67 0.20 0.42 0.74 

Neural 
network 
(nonliner) 
model 8 

0.78 0.28 0.51 0.54 

Neural 
network 
(nonliner) 
model 9 

0.73 0.27 0.44 0.64 

Neural 
network 
(nonliner) 
model 10 

0.74 0.39 0.54 0.47 

Neural 
network 
(nonliner) 
model 11 

0.70 0.24 0.44 0.67 

Neural 
network 
(nonliner) 
model 12 

0.80 0.33 0.55 0.45 

Neural 
network 
(nonliner) 
model 13 

0.72 0.28 0.48 0.62 

Neural 
network 
(nonliner) 
model 14 

0.70 0.32 0.49 0.60 

Mixed model 1 0.70 0.73 0.71 0.85 
Mixed model 2 0.74 0.71 0.72 0.84 
Mixed model 3 0.70 0.77 0.73 0.79  

Table 6 
Performances of the 14 representative contacts-based neural network (nonliner) 
models and 1 representaive contacts-based mixed model.  

Model Pearson’s correlation coefficient (R) 

Training set 
(131 
complexes) 

Validation set 
(131 
complexes) 

Set1 (262 
complexes) 

Set2 (33 
complexes) 

Neural 
network 
(nonliner) 
model 1 

0.66 0.34 0.48 0.48 

Neural 
network 
(nonliner) 
model 2 

0.66 0.28 0.48 0.53 

Neural 
network 
(nonliner) 
model 3 

0.70 0.17 0.42 0.63 

Neural 
network 
(nonliner) 
model 4 

0.62 0.29 0.44 0.61 

Neural 
network 
(nonliner) 
model 5 

0.75 0.24 0.48 0.58 

Neural 
network 
(nonliner) 
model 6 

0.65 0.33 0.47 0.48 

Neural 
network 
(nonliner) 
model 7 

0.71 0.24 0.42 0.53 

Neural 
network 
(nonliner) 
model 8 

0.66 0.24 0.42 0.60 

Neural 
network 
(nonliner) 
model 9 

0.73 0.27 0.48 0.46 

Neural 
network 
(nonliner) 
model 10 

0.71 0.30 0.46 0.52 

Neural 
network 
(nonliner) 
model 11 

0.75 0.27 0.48 0.41 

Neural 
network 
(nonliner) 
model 12 

0.71 0.32 0.48 0.42 

Neural 
network 
(nonliner) 
model 13 

0.64 0.34 0.49 0.49 

Neural 
network 
(nonliner) 
model 14 

0.72 0.22 0.42 0.50 

Mixed model 1 0.73 0.70 0.71 0.79  
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constructed nonlinear model 2; 0.31 and 0.48 for constructed nonlinear 
model 3. The common descriptors in the 3 constructed nonlinear terms 
were RSA of polar AAs (A3), LSA of polar AAs (A7), and total interface 
area (A21). The surface and interface areas were adopted simultaneously 
in each of the 5 area-based linear or nonlinear models with explicit 
formations, which demonstrated that the surface and interface contri-
butions to antibody‒antigen binding affinity should be jointly consid-
ered to achieve more predictive power. 

Among the 14 area-based neural network models, 4 models had R 
values equal to or higher than 0.5 in both Set1 and Set2 (neural network 
models 2, 4, 6 and 8 in Table 5). The mixed models were the linear 
combinations of the representative neural network models. The 3 area- 
based mixed models were superior to the single area-based neural 
network model (Table 5). One neural network model only grasped one 
aspect of the antibody‒antigen binding affinity, which is analogous to 
the role of van der Waals, electrostatic or hydrogen bonding energy in 
the total nonbonding energy. Overall, the performances of 14 repre-
sentative contacts-based neural network models (Table 6) were not as 
good as the ones of the representative area-based neural network models 
(Table 5). However, the performance of the contacts-based mixed model 
(R values in Set1 and Set2 are 0.71 and 0.79, respectively) (Table 6) was 

comparable to the performances of the area-based mixed models (R 
values in Set1 and Set2 are 0.71 and 0.85, respectively, for area-based 
mixed model 1; 0.72 and 0.84 for area-based mixed model 2; 0.73 and 
0.79 for area-based mixed model 3) (Table 5). 

The performances of the representative random forest and mixed 
models are shown in Tables 7 and 8. The R values of the 14 area-based 
random forest models in Set1 or Set2 were from 0.56 to 0.66 (Table 7), 
and those of the contacts-based random forest models were from 0.52 to 
0.60 (Table 8). The representative area-based mixed model (based on 
random forest models) (Table 7, R values in Set1 and Set2 are 0.74 and 
0.75, respectively) was superior to the single random forest models. The 
performances of the representative random forest models were generally 
better than those of the representative neural network models for both 
area-based and contacts-based models (Table 5 vs Table 7, Table 6 vs 
Table 8). Nevertheless, the predictive powers of the representative 
mixed models based on neural network models were comparable to the 
performances of the representative mixed models based on random 
forest models. 

It is of note that the performances of single neural network or 
random forest models in the stochastic validation sets are not as good as 
those in the stochastic training sets (Table 5, 6, 7 and 8). Among all the 
single neural network or random forest models, there exists only one 

Table 7 
Performances of the 14 representative area-based random forest (nonliner) 
models and 1 representaive area-based mixed model.  

Model Pearson’s correlation coefficient (R) 

Training set 
(131 
complexes) 

Validation set 
(131 
complexes) 

Set1 (262 
complexes) 

Set2 (33 
complexes) 

Random forest 
(nonliner) 
model 1 

0.88 0.18 0.61 0.61 

Random forest 
(nonliner) 
model 2 

0.88 0.18 0.61 0.61 

Random forest 
(nonliner) 
model 3 

0.89 0.25 0.63 0.60 

Random forest 
(nonliner) 
model 4 

0.89 0.22 0.63 0.63 

Random forest 
(nonliner) 
model 5 

0.90 0.24 0.65 0.58 

Random forest 
(nonliner) 
model 6 

0.90 0.23 0.64 0.56 

Random forest 
(nonliner) 
model 7 

0.80 0.24 0.57 0.58 

Random forest 
(nonliner) 
model 8 

0.89 0.30 0.64 0.59 

Random forest 
(nonliner) 
model 9 

0.90 0.34 0.66 0.59 

Random forest 
(nonliner) 
model 10 

0.90 0.29 0.65 0.57 

Random forest 
(nonliner) 
model 11 

0.90 0.26 0.63 0.61 

Random forest 
(nonliner) 
model 12 

0.80 0.38 0.60 0.59 

Random forest 
(nonliner) 
model 13 

0.77 0.36 0.58 0.62 

Random forest 
(nonliner) 
model 14 

0.80 0.35 0.59 0.59 

Mixed model 1 0.77 0.71 0.74 0.75  

Table 8 
Performances of the 14 representative contacts-based random forest (nonliner) 
models.  

Model Pearson’s correlation coefficient (R) 

Training set 
(131 
complexes) 

Validation set 
(131 
complexes) 

Set1 (262 
complexes) 

Set2 (33 
complexes) 

Random forest 
(nonliner) 
model 1 

0.86 0.19 0.53 0.55 

Random forest 
(nonliner) 
model 2 

0.85 0.21 0.55 0.56 

Random forest 
(nonliner) 
model 3 

0.85 0.15 0.52 0.54 

Random forest 
(nonliner) 
model 4 

0.88 0.19 0.55 0.59 

Random forest 
(nonliner) 
model 5 

0.86 0.22 0.57 0.56 

Random forest 
(nonliner) 
model 6 

0.84 0.18 0.54 0.56 

Random forest 
(nonliner) 
model 7 

0.81 0.22 0.52 0.54 

Random forest 
(nonliner) 
model 8 

0.85 0.19 0.58 0.55 

Random forest 
(nonliner) 
model 9 

0.86 0.28 0.59 0.55 

Random forest 
(nonliner) 
model 10 

0.85 0.30 0.58 0.57 

Random forest 
(nonliner) 
model 11 

0.86 0.31 0.60 0.54 

Random forest 
(nonliner) 
model 12 

0.86 0.31 0.60 0.53 

Random forest 
(nonliner) 
model 13 

0.86 0.30 0.58 0.58 

Random forest 
(nonliner) 
model 14 

0.86 0.31 0.60 0.52  
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model for which the R values in the stochastic training set, stochastic 
validation set, Set1 and Set2 are consistently higher than 0.45. The 
model is an area-based random forest model with R values of 0.70 
(stochastic training set), 0.46 (stochastic validation set), 0.58 (Set1) and 
0.55 (Set2). In the random forest model, the number of trees and the 
minimum number of observations per tree leaf are 50 and 15, respec-
tively. In order to generate models with the global minima of prediction 
errors in different sets, the same training sets, number of trees, minimum 
number of observations per tree leaf are adopted to train 10000 new 
random forest models. The performances of these models in the training 
and validation sets are shown in Supplementary Fig. 1A, and those in 
Set1 and Set2 are shown in Supplementary Fig. 1B. There were 3 models 
with R values higher than 0.45 in all the sets (Supplementary Table 1), 
which are not better than the initial random forest model, and are also 
not better than the best mixed models which had R values higher than 
0.70 in all the sets (Table 5, 6, and 7). 

3.5. Comparison of the performances of different models 

The predictive powers of the CSM-AB model [27], the 
newly-developed 37 area-based models and the 29 contacts-based 
models were compared based on their performances in Set1 and Set2. 
As shown in Fig. 8, the relative predictive powers of these models (ac-
cording to their performances) were the CSM-AB model [27] < area--
based constructed nonlinear models < area-based linear models <
contacts-based nonlinear (neural network) models < area-based 
nonlinear (neural network) models ≤ contacts-based nonlinear (random 
forest) models < area-based nonlinear (random forest) models <
area-based and contacts-based mixed (based on neural network or 
random forest) models. 

In addition, the performances of the CSM-AB model [27], the best 
contacts-based model (mixed model 1 in Table 6) and the area-based 
model (mixed model 3 in Table 5) are shown in Fig. 9. The R values in 
Set1 and Set2 were (0.32, 0.35) for the CSM-AB model [27], (0.71, 0.79) 
for the best contacts-based model, and (0.73, 0.79) for the best 
area-based model. This result shows that our models have better pre-
dictive ability than the CSM-AB model. 

4. Discussion 

In the present study, different models were constructed to predict 
antibody‒protein antigen binding using area-based and contacts-based 
descriptors through constructing and training different predictive 
models. The best area-based and contacts-based models developed in 

this study for antibody‒antigen binding affinity prediction are superior 
to the previous area-based and contacts-based models constructed for 
general protein‒protein binding affinity prediction [29–31] and the 
graph-based CSM-AB model specifically designed for antibody‒antigen 
binding affinity prediction [27]. These models may aid in the antibody 
design and shed lights on the mechanism of the binding interaction 
between an antibody and a protein antigen. 

While the previous predictive models were trained based on protein‒ 
protein binding affinity data, the new models developed in this study 
were trained solely based on the antibody‒protein antigen binding af-
finity data. The performances of the previous models and the new 
models on antibody‒protein antigen binding affinity prediction are 
shown in Figs. 4 and 8, respectively. The Pearson’s correlation co-
efficients (R) in Set1 (262 complexes) and Set2 (33 complexes) for pre-
vious models (except two area-based mixed models) are below 0.30 and 
0.60, respectively (Fig. 4 and Supplementary File 2), with best R values 
in Set1 and Set2 being 0.26 and 0.73, respectively. In comparison, the R 
values in Set1 (262 complexes) and Set2 (33 complexes) for all new 
models developed in this study are higher than 0.30 (Fig. 8, Supple-
mentary File 3 and Supplementary File 4), with the best R values in 
Set1 and Set2 being 0.74 and 0.85, respectively. The improvements in 
performance clearly indicate the importance of including exclusively the 
antibody‒protein antigen binding affinity datasets as the training 
models. 

One of the key questions in antibody-protein antigen binding affinity 
prediction is to determine what are the most suitable descriptors from 
both theoretical and practical points of views. In this work, the contacts- 
based and area-based descriptors were employed to predict antibody‒ 
protein antigen binding affinity, in an attempt to better understand the 
geometry‒affinity relationship for antibody‒protein antigen in-
teractions. While the performances of the simple linear or nonlinear 
models with explicit and explainable formations were not better than 
the existing models (which was expected), the formations of these 
models still aid in the better understanding of the antibody-protein an-
tigen binding interactions, and this information may also be of some 
value in the design of effective models for antibody-protein antigen 
binding affinity prediction. 

It is of note that several platforms or protocols have been proposed 
for antibody design in the past few decades [5,7,10,11,40–43]. The 
importance and effects of different types of amino acids on antibody‒ 
protein antigen binding affinity/energy have been analyzed, and the 
knowledge gained from these studies helped the design of more effective 
antibodies [44–52]. For instance, the role of tyrosine in antibody‒an-
tigen binding interaction was noted in several earlier studies [44–48, 

Fig. 8. Performances of different representative area-based, contacts-based models and the CSM-AB model [27]. The CSM-AB model [27], the 37 area-based 
models and the 29 contacts-based models are represented as diamond, dots and squares, respectively. The performance is estimated using the Pearson’s correlation 
coefficient (R). 
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50], which may be related to the biochemical characteristics of tyrosine 
(e.g., aromaticity, polar but uncharged, and a bulky side chain). Another 
example is related to AA residues involved in electrostatic interactions. 
While some of the previous studies have shown that electrostatic in-
teractions can improve antibody affinity and specificity [53–55], there 
were also studies reporting that arginine does not contribute to naïve 
antibody binding affinity, but it may enhance non-specific interactions 
[47,48]. Tiller et al. demonstrated that the effects of arginine mutations 
in CDRs are context-dependent [51]. Arginine mutations in hydrophobic 
portions of CDRs can lead to high-specificity antibody binding, where 
those in hydrophilic parts result in low-specificity binding [51]. 
Different influences of the same amino acid type may result from the 
structural environments with varying physicochemical properties which 
correspond to different configurations for antibody‒antigen in-
teractions. For example, diverse conformations of the CDR-H3 loop are 
very important for the specific binding of antibodies to different protein 

antigens [56–59]. 
According to the explicit formations of the five linear and nonlinear 

representative models in this work (Table 3), RSA of polar AAs (A3) and 
LSA of polar AAs (A7) are the common descriptors, which imply that the 
polar AAs (polar but uncharged amino acids: CYS, ASN, GLY, SER, GLN, 
TYR and THR) present on the antibody and protein antigen surface areas 
may play an important role in the antibody‒protein antigen in-
teractions. The positive coefficients of A3 and A7 signify that the larger 
surface area of the polar AAs is associated with the higher log(K) value 
(i.e., a weaker binding affinity). The larger surface areas of polar AAs 
may increase the stabilities of antibody and protein antigen monomers 
in water solvents, thereby reducing the binding interaction between the 
antibody and the protein antigen. It is of note that these results are 
different from the results of the representative linear models for general 
protein‒protein interactions described in our recent work in which the 
coefficients of A3 and A7 were negative and positive, respectively [29]. It 

Fig. 9. Performances of the best area-based, contacts-based models and the CSM-AB model [27]. A. The CSM-AB model [27] in Set1 (262 complexes). B. The 
CSM-AB model [27] in Set2 (33 complexes). C. Contacts-based model in Set1 (262 complexes). D. Contacts-based model in Set2 (33 complexes). E. Area-based model 
in Set1 (262 complexes). F. Area-based model in Set2 (33 complexes). R and RMSE are the Pearson’s correlation coefficient and root mean square error, repsetively. 
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appears that the antibody‒protein antigen interactions may have 
different characteristics from the general protein‒protein interactions. 
In area-based protein‒protein binding affinity prediction [29], RSA of 
polar AA (A3) and the interface area of polar AAs ~ polar AAs (A11) are 
the most important variables. RSA of polar AA (A3) is a common 
important variable in both protein‒protein binding affinity prediction 
and also antibody-protein antigen binding affinity prediction. It is 
possible that RSA of polar AA (A3) is critical for sustaining the structural 
stability of the receptor (or antibody) and the complex in solvent. More 
reliable experimental data are required to confirm or correct the results 
reported in this work or in our recent work [29]. 

It is of note that the random forest is better than neural network in 
terms of the best performances of the trained models. The random forest 
is one of the ensemble learning methods, which integrates the predictive 
powers of different subsets of decision trees [38,39]. The mixed models 
in this work also belong to the ensemble learning methods. The potential 
drawbacks of the ensemble learning methods include increase of infor-
mation redundancy and decrease of simplicity. Here it is worth 
mentioning that the variations in experimental data (such as binding 
affinity) represent an important intrinsic factor affecting the perfor-
mance of the approximated models. As such, the predictive powers 
could not be improved infinitely using ensemble learning. With the 
increasing complexity of ensemble learning, the performance can be 
improved to some extent, but the general applicability of the model may 
decrease. As the effectiveness of the area-based and contacts-based de-
scriptors for antibody‒antigen binding affinity prediction is closely 
associated with the complexities of the models, the simpler models, in 
general, would be much more preferred if the same level of predictive 
power is achieved. Apparently, improvements are needed in future to 
develop simpler and yet more powerful models for the prediction of the 
antibody‒antigen binding affinities. 

5. Concluding remarks 

Accurate antibody‒antigen binding affinity prediction is of great 
practical value to the success of rational antibody design. In the present 
study, the contacts-based and area-based descriptors are adopted for 
prediction of the antibody-protein antigen binding affinities. Overall, 
the area-based descriptors show slightly better performance than 
contacts-based descriptors. Some representative models are selected 
from a large number of trained models, which incorporate 15 contacts- 
based and 22 area-based models specific for antibody‒protein antigen 
binding affinity prediction. The performances of these representative 
models are better than those of the general models widely used for 
predicting the protein‒protein interactions and a recently-developed 
method specifically designed for predicting antibody‒protein antigen 
interactions. The results of this work may offer insights into the mech-
anisms of the antibody‒antigen binding interactions and may also 
facilitate the antibody design in practice. 
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